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Abstract Cadmium (Cd) is a widespread soil pollutant

and poses a significant threat to human health via the food

chain. Large phenotypic variations in Cd concentration of

radish roots and shoots have been observed. However, the

genetic and molecular mechanisms of Cd accumulation in

radish remain to be elucidated. In this study, a genetic

linkage map was constructed using an F2 mapping popu-

lation derived from a cross between a high Cd-accumu-

lating cultivar NAU-Dysx and a low Cd-accumulating

cultivar NAU-Yh. The linkage map consisted of 523

SRAP, RAPD, SSR, ISSR, RAMP, and RGA markers and

had a total length of 1,678.2 cM with a mean distance of

3.4 cM between two markers. All mapped markers dis-

tributed on nine linkage groups (LGs) having sizes between

134.7 and 236.8 cM. Four quantitative trait loci (QTLs) for

root Cd accumulation were mapped on LGs 1, 4, 6, and 9,

which accounted for 9.86 to 48.64 % of all phenotypic

variance. Two QTLs associated with shoot Cd accumula-

tion were detected on LG1 and 3, which accounted for

17.08 and 29.53 % of phenotypic variance, respectively. A

major-effect QTL, qRCd9 (QTL for root Cd accumulation

on LG9), was identified on LG 9 flanked by NAU-

rp011_754 and EM5me6_286 markers with a high LOD

value of 23.6, which accounted for 48.64 % of the total

phenotypic variance in Cd accumulation of F2 lines. The

results indicated that qRCd9 is a novel QTL responsible for

controlling root Cd accumulation in radish, and the iden-

tification of specific molecular markers tightly linked to the

major QTL could be further applied for marker-assisted

selection (MAS) in low-Cd content radish breeding

program.

Introduction

Cadmium (Cd) is a nonessential heavy metal that is highly

toxic to living organisms. Contamination of agricultural

soils with Cd due to atmospheric deposition and the use of

animal manures, phosphate fertilizers, and sewage sludge

has become a severe problem worldwide (McGrath et al.

2001; Tanhuanpää et al. 2007). Cd2? is rapidly absorbed by

roots and can be loaded into the xylem for its transport into

aerial organs (Grant et al. 1998). Cd2? inhibits plant

growth and development as a consequence of alterations in

photosynthesis, respiration, and nitrogen metabolism as

well as a decrease in water and mineral nutrient uptake

(Deckert 2005; Besson-Bard et al. 2009). Cadmium can

accumulate in human bodies over time through ingestion of

food containing Cd, leading to a risk of chronic toxicity

with excessive intake (Grant et al. 2008; Ueno et al. 2009).

In humans, Cd might cause genotoxic and cytotoxic

effects, leading finally to the inhibition of cell proliferation

and apoptosis. Thus, the reduction of Cd accumulation in

vegetable crops for minimizing human dietary intake of Cd

has become an important food-safety issue.

Radish (Raphanus sativus L., 2n = 29 = 18), an

annual or biennial herb of the Brassicaceae family, is one

of the most important root vegetable crops in the world,

especially in East Asia (Wang and He 2005). Liu et al.
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(2008) reported a large phenotypic variation in Cd con-

centration among different radish genotypes, indicating the

possibility of developing cultivars with low Cd accumu-

lation in the edible tissues. Low-Cd content cultivar

development is an attractive method for reducing the

potential Cd accumulation in crops (Grant et al. 2008).

However, because of determination of Cd concentration is

laborious, time consuming, and expensive, marker-assisted

selection (MAS), the use of molecular markers linked to a

desired gene, could be an alternative to phenotyping

(Tanhuanpää et al. 2007). In order to minimize human

intake of Cd, development of low-Cd radish cultivars has

become a major objective in breeding programs.

A genetic linkage map is the pre-requisite for position-

ing genes/QTLs of interested traits on the chromosome and

exploring genetic and molecular mechanisms of genetic

variations in natural germplasm and breeding lines. Several

molecular marker systems including restriction fragment

length polymorphism (RFLP), randomly amplified poly-

morphic DNA (RAPD), amplified fragment length

polymorphisms (AFLP), simple sequence repeats (SSR),

and single nucleotide polymorphism (SNP) have been

employed to construct linkage maps in radish using inter-

specific or intraspecific populations with a total coverage

from 554 to 1517 cM (Bett and Lydiate, 2003; Tsuro et al.

2005, 2008; Budahn et al. 2009; Kamei et al. 2010;

Shirasawa et al. 2011; Li et al. 2011). Target genes/QTLs

associated with some important agronomic traits, such as

flowering time, root shape and pigmentation, and disease

and pest resistance have been assigned on these maps

(Tsuro et al. 2008; Budahn et al. 2009; Kamei et al. 2010).

However, most of these maps did not have enough markers

to completely cover the whole genome of radish. There-

fore, to increase the efficiency of QTL mapping and mar-

ker-assisted selection (MAS), a high-density linkage map

needed to be constructed with a large number of PCR-

based markers in radish.

QTL mapping is a powerful tool for understanding the

genetic and molecular mechanisms underlying complicated

traits that are controlled by multiple genes, many of which

are important for agricultural products (Yamamoto et al.

2009; Ishikawa et al. 2010). Using QTL mapping, the

chromosomal regions involved in Zn and Cd accumulation

in the hyperaccumulator species Thlaspi caerulescens was

identified. Two QTLs were identified for Cd accumulation

in roots and one QTL was mapped for Cd accumulation in

shoots (Deniau et al. 2006). In rice (Oryza sativa L.),

several QTLs for cadmium accumulation and translocation

have been reported (Kashiwagi et al. 2009; Ishikawa et al.

2005, 2010; Ueno et al. 2009; Xue et al. 2009). Ishikawa

et al. (2005) reported that three putative QTLs controlling

Cd concentration were mapped on chromosomes 3, 6, and

8 using 39 chromosome segment substitution lines (CSSLs)

in brown rice. In soybean (Glycine max L.), one major QTL

(Cda1) associated with seed low Cd accumulation has

recently been identified (Jegadeesan et al. 2010). In durum

wheat, Cd accumulation was found to be governed by a

major gene Cdu1 (Clarke et al. 1997), which was mapped

to 5BL (Knox et al. 2009). A single QTL for grain Cd

accumulation in oat (Avena sativa L.) has been reported

(Tanhuanpää et al. 2007). However, the genetic analysis of

QTLs associated with Cd accumulation in radish roots and

shoots has not yet been reported.

In this study, using an F2 population derived from an

inter-varietal cross between the high- and low Cd-accu-

mulating radish lines, ‘Nau-Dysx’ and ‘Nau-Yh’, a genetic

linkage map was constructed with RAPD, SRAP

(sequence-related amplified polymorphism), SSR, ISSR

(inter-simple sequence repeats), RAMP (randomly ampli-

fied microsatellite polymorphism), and RGA (resistant

gene analog) markers. The aims of this study were to

identify putative QTLs associated with Cd accumulation in

radish roots and shoots and to identify molecular markers

tightly linked to the major QTLs for Cd accumulation. The

results from this study would facilitate genetic improve-

ment of root Cd accumulation in radish breeding programs.

Materials and methods

Plant materials

Two radish advanced inbred lines, NAU-Dysx (high Cd

accumulation) and NAU-Yh (low Cd accumulation), were

used for their contrasting cadmium accumulation ability in

roots and shoots. NAU-Dysx with a cylindrical white skin

root was used as the female parent. NAU-Yh with a small

globular red skin root was used as the pollen donor. The

mapping population consisting of 172 F2 individuals was

obtained by selfing the F1 progeny derived from the

crossing.

Hydroponic culture and Cd treatment

Seeds of two parental lines and 172 F2 individuals were

surface sterilized in 1.2 % NaOCl and incubated at 25 �C

for 3 days in the dark. The germinating seeds were sown

into sand in plastic pots and the seedlings were cultured in

a growth cabinet (14 h light at 25 �C, 10 h dark at 18 �C).

After 3 weeks, seedlings with similar size were trans-

planted into a 20-L plastic container with modified half-

strength Hoagland’s nutrient solution consisting of 2 mM

Ca(NO3)2, 2 mM MgSO4, 0.88 mM K2SO4, 0.25 mM

KH2PO4, 10 lM NaCl, 10 lM H3BO3, 1 lM ZnSO4,

0.6 lM MnSO4, 0.1 lM CuSO4, 0.1 lM (NH4)6Mo7O24,

and 20 lM Fe(III)-EDTA (pH5.4). The nutrient solution
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was refreshed every 3 days. One week later, 50 mg L-1

CdCl2�2.5H2O was added to the solution and cultured in

the growth cabinet for 21 days.

Cadmium determination and statistical analysis

After the hydroponic culture period, the roots of the

seedlings were washed with running deionized water three

times to remove Cd2? from the plant surface. Shoot height

(SH) and root length (RL) were measured. The seedlings

were divided into root and shoot (leaves and stem) tissues

and oven-dried at 105 �C for 1 h and then at 70 �C for

48 h. Root dry weight (RDW) and shoot dry weight (SDW)

were weighed, and total dry weight (TDW) was calculated

according to SDW ? RDW. Dried tissues (0.5 g) were

digested in 5 mL of HNO3–HClO4 (2:1 v/v) mix solution

for 12 h and resuspended in 25 mL of deionized water.

Cadmium concentration was determined by a graphite

furnace atomic absorption spectroscopy (AAnalyst 700;

PerkinElmer, Waltham, MA, USA). For two parental lines,

six repeated samples were prepared and the mean values of

Cd concentrations were calculated from these replicates.

Paired-sample t test was conducted to detect the dif-

ferences in means of all traits between NAU-Dysx and

NAU-Yh. One-way ANOVA analysis was conducted using

SAS Version 9.0 (SAS Institute Inc., Cary, North Carolina)

to verify the significance of variance component for each

trait. Pearson’s correlations for all combinations of traits on

the basis of F2 means across environments were also

calculated.

Molecular marker analysis

Total genomic DNA was extracted from young leaves

according to the modified CTAB method of Liu et al.

(2003). DNA concentration and quality were estimated on

a 1.2 % agarose gel. DNA was diluted to a final concen-

tration of 10 ng/ll and stored at 4 or -20 �C for further

use.

Arbitrary RAPD primers from the Operon Technologies

(Alameda, CA, USA) and ISSR primers described by Liu

et al. (2007) were screened for polymorphism of the two

parental lines. The amplification was performed in the

PTC-100 Thermal cycle (MJ Research Inc., USA)

according to the reported protocol of Williams et al.

(1990), with some minor modifications (Liu et al. 2007).

PCR products were resolved by electrophoresis on 1.2 %

agarose gel run in 19 TAE buffer, stained with ethidium

bromide, and visualized under UV light (Liu et al. 2007).

SRAP primer combinations from Li and Quiros (2001)

were used for SRAP analysis and the SRAP-PCR proce-

dure was performed as described by Liu et al. (2007). SSR

primer pairs derived from B. rapa (Suwabe et al. 2002) and

EST-SSR markers developed from radish (Wang et al.

2007a) were used for SSR analysis. SSR amplification was

performed as described by Tsuro et al. (2005). PCR

products were separated on 8 % non-denaturing poly-

acrylamide gel (Acr:Bis = 29:1) and visualized by silver

staining (Bassam et al. 1991; Liu et al. 2007).

RAMP primers from the combinations with SSR-

anchored primers and ten selected RAPD primers were

used for RAMP analysis. RAMP-PCR reactions were

performed in a total volume of 10 ll containing 10 ng

genomic DNA, 2.0 mM MgCl2, 0.20 mM dNTPs, 0.50 lM

each primer, and 0.5 U Taq DNA polymerase (TAKARA).

RGA primer pairs from Fourmann et al. (2001) were used

for RGA analysis. RGA-PCR amplification was performed

as described by Saal and Struss (2005) with a small mod-

ification. PCR products were separated and visualized as

described for SSR analysis.

Linkage map construction

All primers that exhibited stable and scorable polymor-

phism between the parental lines were further evaluated

on the 172 F2 individuals of the mapping population. X2

test was performed to test segregation distortion at each

marker locus against the expected 3:1 (dominant) or 1:2:1

(codominant) segregation ratio for the F2 population. The

genetic linkage map was constructed using JoinMap ver.

3.0 (Van Ooijen and Voorrips 2001) with a LOD

threshold of 3.0, a recombination fractions threshold of

0.4, and a jump threshold of 5.0. The Kosambi’s mapping

function (Kosambi 1944) was used to convert recombi-

nation fractions into genetic map distances in centiMor-

gans (cM).

QTL analysis

QTL analysis was conducted with composite interval

mapping (CIM) procedure using Windows QTL Cartog-

rapher ver. 2.5 (Zeng 1994; Wang et al. 2007b). CIM

analysis was performed using the Model 6, with the win-

dow size set at 10 cM and a walk speed of 1 cM. The

genome-wide LOD score threshold (a = 0.05) for declar-

ing the presence of QTLs was determined using the per-

mutation test (1,000 replications) (Churchill and Doerge

1994). Based on the permutation results, the LOD score

threshold was set at 3.0 for the trait to declare the presence

of a significant QTL. The additive effect and percentage of

phenotypic variance explained by each QTL were esti-

mated at the peak LOD score. Graphic presentation of the

linkage groups (LGs) and the QTLs were drawn with

MapChart version 2.2 (Voorrips 2002).
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Results

Phenotypic variation in Cd concentration of two

parental lines and the F2 mapping population

Mean value, standard deviation, range, skewness, and

kurtosis for each Cd-related trait measured in the parental

lines and the F2 populations were calculated in Table 1.

The root Cd concentration (RCd) of the parental lines was

significantly different (Table 1; Fig. 1), in which RCd in

Nau-Dysx (17.35 mg kg-1) was approximately 3.8 times

higher than that of Nau-Yh (4.58 mg kg-1) (P\0.01,

F = 6.70). The shoot Cd concentration (SCd) of Nau-Dysx

(1.95 mg kg-1) was significantly 2.7 times higher than that

of Nau-Yh (0.72 mg kg-1) (P\0.01, F = 5.80) (Table 1).

For the 172 F2 individuals, the frequency distribution of

RCd and SCd showed a continuous phenotypic variation

with the kurtosis and skewness less than 1, indicating a

normal distribution of quantitative traits. The RCd varied

from 1.42 to 19.65 mg kg-1 with a mean of 8.52 ± 0.46

mg kg-1, and the SCd ranged from 0.26 to 2.46 mg kg-1

with a mean of 1.17 ± 0.12 mg kg-1 (Table 1; Fig. 1).

The transgressive segregation, however, suggests that some

additional minor genes may also influence Cd accumula-

tion in the Nau-Dysx 9 Nau-Yh population, indicating that

Cd accumulation in radish is a quantitative trait. Correla-

tion analysis showed that the RCd had significant positive

correlations with RL and RDW (r = 0.42 and 0.54,

respectively, P \ 0.01). In addition, SCd had significant

positive correlations with SH and SDW (r = 0.46 and

0.62, respectively, P \ 0.01) (Table 2).

Marker polymorphism

Six types of PCR-based markers were initially screened for

polymorphism between the two parental lines. Those that

showed polymorphism were further screened on the 172 F2

individuals. A total of 1,848 primers (680 SRAP, 600

RAPD, 278 SSR, 120 RAMP, 100 ISSR and 70 RGA) were

used for polymorphism screening, in which 226 SRAP, 128

RAPD, 54 SSR, 26 ISSR, 16 RAMP, and 8 RGA primers

generated polymorphic bands between the parental lines.

The total polymorphism rate of six types of PCR-based

markers varied from 11.4 % (RGA) to 33.2 % (SRAP), and

the polymorphism for ISSR, RAPD, SSR, and RAMP

markers were 26.0, 21.3, 19.4, and 13.3 %, respectively. In

total, 645 informative loci (317 SRAP, 152 RAPD, 80 SSR,

51 ISSR, 31 RAMP, and 14 RGA loci) were successfully

genotyped within the two parental lines and 172 F2 indi-

viduals, and finally subjected to linkage analysis.

Genetic linkage map construction

Markers deviating significantly (P \ 0.01) from the

expected 3:1 (dominant marker) or 1:2:1 (codominant

marker) segregation ratios were excluded from analysis. A

total of 592 polymorphic loci (287 SRAP, 135 RAPD, 78

SSR, 49 ISSR, 29 RAMP, and 14 RGA loci) were used for

linkage map analysis with LOD score set at 3.0. At last,

523 out of 592 loci (88 %) including 248 SRAP, 114

RAPD, 76 SSR, 47 ISSR, 26 RAMP, and 12 RGA markers

were successfully integrated into the linkage analysis with

69 loci remaining unlinked (Table 3).

The linkage map had a total genetic distance of

1,678.2 cM with an average distance of 3.4 cM between

adjacent markers and distributed on nine linkage groups

(LGs), which is equivalent to the haploid chromosome

number in radish (Bett and Lydiate 2003). The average

length per linkage group was 186.5 cM, but ranged from

134.7 cM (LG8) to 236.8 cM (LG6). The number of

markers in each linkage group varied from 29 (LG8) to 79

(LG5). The average distance between linked markers for

each linkage group varied from 2.4 cM (LG5) to 4.8 cM

(LG8) (Fig. 2; Table 3).

Table 1 Descriptive statistics for root length (RL), shoot height (SH),

root dry weight (RDW), shoot dry weight (SDW), total dry weight

(TDW), root Cd concentration (RCd) and shoot Cd concentration

(SCd) in the F2 population derived from the cross Nau-Dysx (high

Cd) 9 Nau-Yh (low Cd)

Trait Parental linesa F2 Population

Nau-Dysx NAU-Yh Min Max Mean Skewness Kurtosis

RL (cm) 8.76 3.47 3.36 14.76 5.68 ± 0.23 0.50 0.02

SH (cm) 9.62 4.63 4.58 16.62 11.18 ± 2.18 -0.15 -0.16

RDW (g) 1.24 0.52 0.34 2.25 1.18 ± 0.19 -0.18 -0.04

SDW (g) 5.38 2.85 0.89 7.52 4.75 ± 0.74 0.73 2.38

TDW (g) 6.62 3.77 1.23 9.77 5.93 ± 1.54 -0.84 1.24

RCd (mg kg-1) 17.35 4.58 1.42 19.65 8.52 ± 0.46 -0.04 0.05

SCd (mg kg-1) 1.95 0.72 0.26 2.46 1.17 ± 0.12 -0.01 -0.28

a Measurements were based on the mean of six randomly selected plants
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QTL mapping for Cd-related agronomic traits

A total of 19 putative QTLs were identified to be associated

with the five Cd-related agronomic traits. These QTLs were

mapped onto radish linkage groups (LGs) 1, 2, 3, 4, 5, 6, 7,

and 9, and individual QTL could explain 4.73–31.42 % of

the phenotypic variance (PV). The main effects and

graphical locations of the 19 QTLs are shown in Table 4.

Five putative QTLs associated with root length (RL)

were detected on LGs 1 (qRL1), 3 (qRL3.1 and qRL3.2),

5 (qRL5), and 7 (qRL7), respectively. The accumulated

contribution of these QTLs explained 68.72 % of the total

phenotypic variance, and individual QTL explained

5.82–27.83 % of the PV. Three of these QTLs (qRL3.1,

qRL5 and qRL7) showed overdominance and the other two

QTLs (qRL1 and qRL3.2) showed dominance. Moreover,

Fig. 1 Phenotypic distribution

of Cd concentration in the F2

mapping population derived

from the cross Nau-Dysx (high

Cd) 9 Nau-Yh (low Cd).

a Frequency distribution of Cd

concentration in roots of the F2

lines; b Frequency distribution

of Cd concentration in shoots of

the F2 lines. Arrow indicates the

level of the two parental lines

Table 2 Correlation coefficients among root length (RL), shoot

height (SH), root dry weight (RDW), shoot dry weight (SDW), total

dry weight (TDW), root Cd concentration (RCd), and shoot Cd

concentration (SCd) of the F2 mapping population derived from the

cross Nau-Dysx (high Cd) 9 Nau-Yh (low Cd)

RCd SCd RL SH RDW SDW

RCd

SCd 0.66**

RL 0.42** 0.05

SH -0.06 0.46** -0.38**

RDW 0.54** 0.09 0.44** -0.08

SDW -0.4** 0.62** -0.01 0.55** -0.36**

TDW -0.32** -0.53** 0.28* 0.38** 0.67** 0.58**

*, ** Significant at P \ 0.05 and P \ 0.01 probability level, respectively

Table 3 Distribution of molecular markers among nine linkage groups (LGs) established on a genetic linkage map using an F2 population

derived from the cross Nau-Dysx (high Cd) 9 Nau-Yh (low Cd)

Linkage group No. of markers Map length (cM) Average distance (cM) Marker types

SRAP RAPD SSR ISSR RAMP RGA

LG1 70 195.515 2.8 31 15 12 7 5 –

LG2 59 172.528 3.0 30 12 8 6 – 3

LG3 51 188.265 3.8 27 11 6 3 2 2

LG4 56 223.414 4.1 28 9 8 4 6 1

LG5 62 145.718 2.4 32 14 5 5 3 3

LG6 79 236.769 3.0 29 26 14 4 4 2

LG7 73 201.557 2.8 39 15 9 6 4 –

LG8 29 134.727 4.8 15 3 3 5 2 1

LG9 44 179.753 4.2 17 9 11 7 – –

Total 523 1,678.246 3.4 248 114 76 47 26 12
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three of these QTLs (qRL1, qRL3.1 and qRL7) increased

RL by the presence of Nau-Dysx alleles, whereas the other

two QTLs (qRL3.2 and qRL5) increased RL by the pres-

ence of Nau-Yh alleles.

Two QTLs associated with shoot height (SH) were

identified on LGs 2 (qSH2) and 5 (qSH5), which explained

12.46 and 6.52 % of the PV, respectively. Together the two

QTLs accounted for 18.98 % of the total phenotypic var-

iance. The QTL qSH2 showed dominance and increased

SH by the presence of the Nau-Dysx allele, whereas qSH5

showed partial dominance and increased SH by the pres-

ence of the Nau-Yh allele.

Fig. 2 Genetic linkage map of

radish (Raphanus sativus L.)

based on an F2 population

derived from the intervarietal

cross Nau-Dysx (high

Cd) 9 Nau-Yh (low Cd).The

marker name and map distances

in centiMorgans (cM) are

indicated on the right and left
side of the linkage groups

(LGs), respectively. Significant

QTL for root length (RL), shoot

height (SH), root dry weight

(RDW), shoot dry weight

(SDW), total dry weight

(TDW), root Cd concentration

(RCd) and shoot Cd

concentration (SCd) were

indicated by bars and whiskers
on the right side of the linkage

group, which are 1- and 2-LOD

likelihood intervals,

respectively. The putative QTL

region along the linkage groups

is highlighted by bar segment
and marker interval to the

putative QTL is shown in bold
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Three QTLs for root dry weight (RDW) were detected

on LGs 5 (qRDW5), 6 (qRDW6), and 9 (qRDW9), respec-

tively. Together these QTLs accounted for 45.69 % of the

total phenotypic variance, and individual QTL accounted

for 4.73–31.42 % of the PV. The QTL qRDW5 showed

partial dominance and increased RDW by the presence of

the Nau-Yh allele, whereas the other two QTLs (qRDW6

and qRDW9) showed overdominance and increased RDW

by the presence of Nau-Dysx alleles.

Three QTLs for shoot dry weight (SDW) were identified

on LGs 2 (qSDW2), 6 (qSDW6), and 9 (qSDW9), respec-

tively. Together these three QTLs accounted for 48.18 %

of the total phenotypic variance, and individual QTL

accounted for 8.68–26.64 % of the PV. The QTL qSDW6

showed dominance and increased SDW by the presence of

the Nau-Dysx allelle, whereas the other two QTLs (qSDW2

and qSDW9) showed overdominance and increased SDW

by the presence of Nau-Yh alleles.

A total of six QTLs for total dry weight (TDW) were

identified on LGs 1 (qTDW1.1 and qTDW1.2), 5 (qTDW5),

6 (qTDW6), 7 (qTDW7), and 9 (qTDW9), respectively. The

accumulated contribution of these six QTLs accounted for

86.3 % of the total phenotypic variance, and individual

QTL explained 6.18–22.85 % of the PV. Three of these

QTLs (qTDW1.1, qTDW6 and qTDW9) showed overdomi-

nance and the other three QTLs (qTDW1.2, qTDW5 and

qTDW7) showed partial to complete dominance. Moreover,

four of these QTLs (qTDW1.1, qTDW5, qTDW6 and

qTDW9) increased TDW by the presence of Nau-Dysx

alleles, whereas the other two QTLs (qTDW1.2 and

qTDW7) increased TDW by the presence of Nau-Yh alleles.

QTL mapping for Cd accumulation in roots and shoots

The QTLs for Cd accumulation in roots and shoots of

radish are summarized in Table 4. Four putative QTLs for

root Cd accumulation (RCd) were identified on LGs 1

(qRCd1), 4 (qRCd4), 6 (qRCd6), and 9 (qRCd9), respec-

tively. The percentage of PV explained by these QTLs

varied from 9.86 to 48.64 %, and all together the four

QTLs accounted for 94.3 % of the total phenotypic vari-

ance. A major QTL qRCd9 with an LOD value of 23.6 was

mapped on LG9 flanked by NAUrp011_754 and

Fig. 3 A major QTL for root Cd accumulation on LG 9 in the F2

population derived from the cross Nau-Dysx (high Cd) 9 Nau-Yh

(low Cd) was identified using composite interval mapping. The LOD

values from each centiMorgan of the linkage groups (LGs) were

plotted against the LGs

Fig. 4 A major QTL for shoot Cd accumulation mapped on LG 3 in

the F2 population derived from the cross Nau-Dysx (high Cd) 9 Nau-

Yh (low Cd) was identified using composite interval mapping. The

LOD values from each centiMorgan of the linkage groups (LGs) were

plotted against the LGs
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EM5me6_286, which accounted for 48.64 % of the PV

(Table 4; Fig. 3). The QTL qRCd6 showed dominance and

the other three QTLs (qRCd1, qRCd4 and qRCd9) showed

overdominance. The RCd was increased by the presence of

Nau-Yh alleles at qRCd1 and qRCd6 and by the presence

of Nau-Dysx alleles at qRCd4 and qRCd9.

Within a 10.0-cM region around the major QTL qRCd9,

two RAPD markers (NAUrp011_754 and NAUrp751_764)

distributed at one side of qRCd9 with a distance of 4.8 and

7.0 cM, respectively, and the RAPD marker NAU-

rp011_754 located 4.8 cM to qRCd9 was the closest one.

On the other side of qRCd9, the SRAP marker

EM5me6_286 was most closely linked with a distance of

5.6 cM and the SSR marker BRMS058_620 was located at

a distance of 7.6 cM to qRCd9.

Two putative QTLs associated with shoot Cd accumu-

lation (SCd) were detected on LGs 1 (qSCd1) and 3

(qSCd3), respectively. A major QTL qSCd3 with an LOD

value of 7.64 was identified on LG3 flanked by

EM16ga18_383 and Na10A08_455, which explained

29.53 % of the PV (Table 4; Fig. 4). The other QTL

(qSCd1) flanked by Ol10F09_445 and PM17ga27_569 was

located on LG1 and explained 17.08 % of the PV with an

LOD value of 4.37. The QTL qSCd1 showed dominance

and increased SCd by the presence of the Nau-Yh allele,

whereas qSCd3 showed overdominance and increased SCd

by the presence of the Nau-Dysx allele.

In addition, one SRAP marker (EM16ga18_383) and two

RAPD markers (NAUrp1106_792 and NAUrp829_696)

distributed at one side of qSCd3 with a distance of 3.2, 7.5,

and 9.8 cM, respectively, and the SRAP marker

EM16ga18_383 was the closest one with a distance of 3.2 cM

to qSCd3. On the other side of qSCd3, the EST-SSR marker

Na10A08_455 was the closest one with a distance of 7.4 cM

and the SRAP marker PM2em11_312 was located at a dis-

tance of 9.6 cM to qSCd3.

Discussion

Cadmium is a vital toxicant that presents a potential risk to

human health, as Cd consumption may cause many serious

sicknesses including ‘Itai-itai’ disease. Radish is an

important fleshy root vegetable worldwide. To minimize

human intake of Cd, there is an urgent need to understand

the genetic molecular mechanisms of Cd accumulation to

devise a breeding program for developing low-Cd content

radish cultivars.

Constructing a high-density linkage map is a vital

prerequisite for genetically dissecting the location and

organization of genes/QTLs associated with complex

agronomic traits. Genetic linkage maps have been con-

structed for many economically important vegetable crop

species including a few Brassicaceae vegetables, such as

Brassica napus (Suwabe et al. 2006; Smooker et al. 2011),

B. oleracea (Gao et al. 2007), and B. rapa (Choi et al.

2007). However, limited information on molecular genetics

of important complicated traits in radish is available (Ka-

mei et al. 2010). Only a few genetic linkage maps of radish

have been reported (Bett and Lydiate 2003; Tsuro et al.

2005; Budahn et al. 2009; Kamei et al. 2010; Shirasawa

et al. 2011; Li et al. 2011). Recently, an intraspecific radish

linkage map was constructed using an F2 population and

RAPD, dpRAPD, AFLP, and SSR marker systems (Budahn

et al. 2009). That map consists of 545 markers, encom-

passing 1,517.1 cM and distributed on nine linkage groups

with an average distance of 2.8 cM between makers.

Moreover, Shirasawa et al. (2011) reported a radish map

that consisted of 630 SSR loci and 213 RAPD, RFLP, and

trait marker loci, covering 1,129.2 cM and distributed on

nine linkage groups with an average distance of 1.3 cM

between makers. Li et al. (2011) constructed another radish

map that consisted of 746 SNP markers, covering

806.7 cM and distributed on nine linkage groups with an

average distance of 1.1 cM between makers. In this study,

a comprehensive genetic linkage map was constructed with

532 loci using an F2 population. The map had a total

coverage of 1,678.2 cM with an average distance of

3.4 cM between adjacent markers and distributed on nine

linkage groups. To our knowledge, this map comprises the

longest genetic distance among all published linkage maps

of radish species (Shirasawa et al. 2011; Li et al. 2011).

The loci of the present map were evenly distributed on the

entire genome rather than assembling in clusters. However,

the coverage of markers varied per linkage group, with

LG1, LG6, and LG7 having the best coverage overall and

LG8 having the least coverage (Table 3; Fig. 2). Our result

was very similar to the one observed in the previous

intraspecific maps (Budahn et al. 2009), which might be

due to the nonrandom distribution of polymorphic loci and

lack of marker polymorphism between mapping parents on

some linkage groups (Budahn et al. 2009; Tsuro et al.

2005; Shirasawa et al. 2011).

Parental lines that show wide phenotypic variations in

the target agronomic traits are necessary for QTL analysis,

because QTL detection is based on natural allelic differ-

ences between parental lines (Ashikari et al. 2005; Ishik-

awa et al. 2010). The two radish lines used in this study

have striking contrasting characteristics on Cd accumula-

tion in roots and shoots, in which Nau-Yh is a low-

Cd-accumulating cultivar and Nau-Dysx is a high-Cd-

accumulating cultivar. To our knowledge, this is the first

report on QTL mapping for Cd accumulation in roots and

shoots of radish. A major QTL (qRCd9) for root Cd

accumulation was detected with a high LOD value of

23.64, which showed overdominance and explained a large

Theor Appl Genet (2012) 125:659–670 667
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proportion of the PV (R2 = 48.64 %) in the F2 population

(Table 4). In addition, the positive additive value of qRCd9

indicates that the major gene increasing root Cd accumu-

lation is located on qRCd9 of the Nau-Dysx allele.

Therefore, it can be concluded that the gene located on the

qRCd9 region between NAUrp011_754 and EM5me6_286

on LG9 is responsible for controlling root Cd accumulation.

Moreover, three minor QTLs (qRCd1, qRCd4, and qRCd6)

for root Cd accumulation were also detected on LGs 1, 4, and

6 and these three QTLs could explain 26.42, 9.86, and

14.38 % of the phenotypic variance, respectively. Two of

these QTLs (qRCd1 and qRCd4) showed overdominance,

whereas the other QTL qRCd6 showed dominance (Table 4).

In recent years, a few studies have reported that some

important agronomic traits including RL, SH, RDW, SDW,

and TDW influence the root/shoot Cd accumulation at dif-

ferent levels, indicating that the identification of target QTLs

for these agronomic traits may provide valuable approach for

understanding the genetic molecular mechanisms of Cd

accumulation in plants (Ishikawa et al. 2010; Xue et al.

2009). In the present study, both qRCd1 and qRL1 were

located on LG1 for RCd and RL, respectively. However,

qRCd1 flanked by Ni2E05_525 and PM17em10_456, and

qRL1 flanked by Na10F06_550 and Fc9odd54_388, indi-

cating that these two QTLs were not located on the same

chromosomal region of LG1. Moreover, qRCd1 increased

RCd by the presence of Nau-Dysx allele, while qRL1

increased RL by the presence of Nau-Yh allele, indicating

that the addictive effects of the two QTLs come from dif-

ferent parent’s alleles. Similar results were also observed

between qRCd6 and qRDW6 on LG6 and qRCd9, and

qRDW9 on LG9. Moreover, the QTL qRL1 showed domi-

nance, whereas the other two QTLs (qRDW6 and qRDW9)

showed overdominance. Furthermore, these three QTLs

(qRL1, qRDW6 and qRDW9) were involved in agronomic

traits that may influence the RCd. These results indicated that

the RCd had significant positive correlations with RL and

RDW, respectively (Table 2). Additionally, SCd had sig-

nificant positive correlations with SH and SDW, respectively

(Table 2). However, the QTLs associated with SCd, SH, and

SDW were not successfully mapped on the same linkage

groups (Table 4; Fig. 2).

Previous studies have detected several QTLs that asso-

ciated with Cd accumulation and translocation in other

species (Ishikawa et al. 2005, 2010; Wiebe et al. 2010). In

rice, six putative QTLs controlling Cd accumulation have

been detected on chromosomes 3, 6, and 8 (Ishikawa et al.

2005, 2010) and chromosomes 2, 5, and 11 (Ueno et al.

2009), respectively. In wheat, a major QTL (Cdu1) associ-

ated with seed Cd accumulation has been identified and

mapped to 5BL (Clarke et al. 1997; Knox et al. 2009).

Recently, QTLs for the translocation of Cd from source to

sink regions were detected in rice (Kashiwagi et al. 2009;

Tezuka et al. 2010). A major QTL (qCdT7) controlling Cd

translocation from roots to shoots has been identified on rice

chromosome 7, and this QTL explained a large proportion of

the phenotypic variation (R2 = 88 %), indicating that low

Cd accumulation is a dominant trait (Tezuka et al. 2010).

Courbot et al. (2007) reported that the heavy metal trans-

porting ATPase4 (HMA4) was co-localized with a major

QTL whose transcript levels were shown to be higher in roots

and shoots of Arabidopsis halleri. Nakanishi et al. (2006)

found that two rice Fe2? transporters, OsIRT1 (Iron-Regu-

lated Transporter 1) and OsIRT2, also had the ability to

transport Cd in yeast. Takahashi et al. (2011) reported that

OsNramp1 iron transporter was involved in high-level Cd

accumulation in rice. However, the candidate genes for

heavy metal transport located on qRCd9 have not been val-

idated in radish. BLASTn analysis revealed that genomic

homology exists between radish ESTs and the four Cd-

related genes, but none of them has been successfully cloned

in radish to date. With the similar physiological and genetic

mechanisms observed, mapping and isolating of these genes

in radish should be a vital subject of priority.

Recently, a few molecular markers linked to the target

QTLs associated with Cd accumulation have been iden-

tified in some crop species, such as wheat (Wiebe et al.

2010), soybean (Jegadeesan et al. 2010), and oat (Tan-

huanpää et al. 2007), which have the potential to develop

low-Cd content cultivars in breeding programs. In this

study, four PCR-based markers (two RAPD, one SRAP

and one BRMSSR marker) were successfully mapped

within 10.0 cM region to the major QTL qRCd9, and the

RAPD marker NAUrp011_754 was the closest one with

a linkage distance of 4.8 cM to qRCd9. These molecular

markers tightly linked to the major QTL for Cd accu-

mulation in radish could be further applied in MAS for

developing low-Cd content radish cultivars and identi-

fying gene(s) responsible for low Cd accumulation,

which would be more efficient and cost-effective com-

paring with the traditional breeding process. Moreover,

the result of this study will also provide valuable

information for better understanding the genetic molec-

ular mechanisms for Cd accumulation in radish.
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